Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If C0,C1, C2, ....,Cn are binomial coefficients of order n, then the value of (C1/2)+(C3/4)+(C5/6)+...=
Q. If
C
0
,
C
1
,
C
2
,
....
,
C
n
are binomial coefficients of order n, then the value of
2
C
1
+
4
C
3
+
6
C
5
+
...
=
2980
216
COMEDK
COMEDK 2009
Binomial Theorem
Report Error
A
n
+
1
2
n
+
1
16%
B
n
+
1
2
n
−
1
46%
C
n
−
1
2
n
+
1
18%
D
n
+
1
2
n
20%
Solution:
2
C
1
+
4
C
3
+
6
C
5
+
...
=
1
⋅
2
n
+
1
⋅
2
⋅
3
⋅
4
n
(
n
−
1
)
(
n
−
2
)
1
⋅
2
⋅
3
⋅
4
⋅
5
⋅
6
+
n
(
n
−
1
)
(
n
−
2
)
(
n
−
3
)
(
n
−
4
)
+
.....
=
(
n
+
1
)
1
[
2
!
n
(
n
+
1
)
+
4
!
n
(
n
−
1
)
(
n
−
2
)
(
n
+
1
)
+
...
]
=
n
+
1
1
[
n
+
1
C
2
+
n
+
1
C
4
+
......
]
=
n
+
1
1
[
2
n
+
1
−
1
−
1
]
=
n
+
1
2
n
−
1