Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If both roots of the quadratic equation x2-2 k x+k2+2 k-5=0 are less than 4 , then exhaustive set of values of k is
Q. If both roots of the quadratic equation
x
2
−
2
k
x
+
k
2
+
2
k
−
5
=
0
are less than 4 , then exhaustive set of values of
k
is
378
92
Complex Numbers and Quadratic Equations
Report Error
A
k
∈
R
B
k
<
4
C
k
≤
2
5
D
k
>
0
Solution:
f
(
x
)
=
x
2
−
2
k
x
+
k
2
+
2
k
−
5
(i)
f
(
4
)
>
0
16
−
8
k
+
k
2
+
2
k
−
5
>
0
k
2
−
6
k
+
11
>
0
k
∈
R
(ii)
D
≥
0
4
k
2
−
4
(
k
2
+
2
k
−
5
)
≥
0
−
2
k
+
5
≥
0
∴
k
≤
2
5
(iii)
2
a
−
b
<
4
2
2
k
<
4
∴
k
<
4
Hence, from (i)
∩
(ii)
∩
(iii)
k
∈
(
−
∞
,
2
5
]