Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If b + ic = (1 +a) z and a2 + b2 + c2 = 1, then (1+iz /1-iz) is equal to
Q. If
b
+
i
c
=
(
1
+
a
)
z
and
a
2
+
b
2
+
c
2
= 1, then
1
−
i
z
1
+
i
z
is equal to
2890
183
Complex Numbers and Quadratic Equations
Report Error
A
1
−
c
a
−
ib
15%
B
1
+
c
a
−
ib
32%
C
1
+
c
a
+
ib
37%
D
1
−
c
a
+
ib
16%
Solution:
Since
z
=
1
+
a
b
+
i
c
∴
i
z
=
1
+
a
ib
−
c
∴
1
−
i
z
1
+
i
z
=
1
−
1
+
a
ib
−
c
1
+
1
+
a
ib
−
c
=
1
+
a
−
ib
+
c
1
+
a
+
ib
−
c
=
(
1
+
a
+
c
)
−
ib
(
1
+
a
−
c
)
+
ib
⋅
(
1
+
a
+
c
)
+
ib
(
1
+
a
+
c
)
+
ib
=
(
1
+
a
+
c
)
2
+
b
2
(
1
+
a
+
ib
)
2
−
c
2
=
1
+
a
2
+
c
2
+
b
2
+
2
a
+
2
c
+
2
a
c
1
+
a
2
−
b
2
−
c
2
+
2
a
+
2
ib
+
2
iab
=
1
+
1
+
2
a
+
2
c
+
2
a
c
1
+
a
2
−
(
1
−
a
2
)
+
2
a
+
2
ib
+
2
iab
[
∵
a
2
+
b
2
+
c
2
=
1
∴
b
2
+
c
2
=
1
−
a
2
]
=
2
+
2
a
+
2
c
+
2
a
c
2
a
2
+
2
a
+
2
ib
+
2
iab
=
2
(
a
+
1
)
+
2
c
(
a
+
1
)
2
a
(
a
+
1
)
+
2
ib
(
a
+
1
)
=
2
(
a
+
1
)
(
1
+
c
)
2
(
a
+
ib
)
+
(
a
+
1
)
=
1
+
c
a
+
ib