Let i^ be a unit vector in the direction of b,j^ in the direction of c. Note that c=j^ and (b×c)=∣b∣∣c∣sinαk^=sinαk^
where, k^ is a unit vector perpendicular to b and c. ⇒∣b×c∣=sinα⇒k^=∣b×c∣b×c
Let a=a1i^+a2j^+a3k^
Now, a⋅b=a⋅i=i^⋅(a1i^+a2j^+a9k^)=a1
and a⋅c=a⋅j^=j^⋅(a1i^+a2j^+a3k^)=a2
and a⋅∣b×c∣b×c=a⋅k^=a3 ∴(a⋅b)b+(a⋅c)c+∣b×c∣2a⋅(b×c)(b×c) =a1b+a2c+a3∣b×c∣(b×c)=a1i^+a2j+a3k^=a