Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If b > a , then ∫ limitsba (dx/√(x-a)(b-x)) is equal to
Q. If
b
>
a
, then
a
∫
b
(
x
−
a
)
(
b
−
x
)
d
x
is equal to
1738
247
UPSEE
UPSEE 2009
Report Error
A
2
π
B
π
C
2
π
(
b
−
a
)
D
4
π
(
b
−
a
)
Solution:
a
∫
b
(
x
−
a
)
(
b
−
x
)
d
x
=
∫
a
b
−
x
2
+
(
a
+
b
)
x
−
ab
1
d
x
=
a
∫
b
(
2
b
−
a
)
2
−
(
x
−
2
a
+
b
)
2
1
d
x
=
[
sin
−
1
(
2
b
−
a
x
−
2
a
+
b
)
]
a
b
=
sin
−
1
1
−
sin
−
1
(
−
1
)
=
2
π
+
2
π
=
π
In above integral if limits are not given, then it will be solved by substituting
x
=
a
cos
2
θ
+
b
sin
2
θ