Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If arithmetic mean of two distinct positive real numbers a and b (a > b) be twice their geometric mean, then a: b =
Q. If arithmetic mean of two distinct positive real numbers
a
and
b
(
a
>
b
)
be twice their geometric mean, then
a
:
b
=
4342
192
Sequences and Series
Report Error
A
(
2
+
3
)
:
(
2
−
3
)
59%
B
(
2
+
5
)
:
(
2
−
5
)
16%
C
(
2
+
2
)
:
(
2
−
2
)
11%
D
N
o
n
e
o
f
t
h
ese
14%
Solution:
By the given condition,
2
a
+
b
=
2
ab
⇒
a
+
b
=
4
ab
Now,
(
a
−
b
)
2
=
(
a
+
b
)
2
−
4
ab
=
16
ab
−
4
ab
=
12
ab
∴
a
−
b
=
12
ab
=
2
3
ab
.a
(Taking
+
v
e
sign only as
a
>
b
)
∴
a
−
b
a
+
b
=
2
3
ab
4
ab
=
3
2
By componendo and dividendo,
2
b
2
a
=
2
−
3
2
+
3
or
b
a
=
2
−
3
2
+
3