α=x→4πlimcos(x+4π)tan3x−tanx;00 form
Using L Hopital rule α=x→4πlim−sin(x+4π)3tan2xsec2x−sec2x ⇒α=−4 β=x→0lim(cosx)cotx=elimx→0tanx(cosx−1) β=ex→0limx2−(1−cosx)⋅(xtanx)xx2 β=ex→0lim(2−1)⋅1x=x1 α=−4;β=1
If ax2+bx−4=0 are the roots then 16a−4b−4=0&a+b−4=0 ⇒a=1&b=3