We have, f(x)=x2+3x−3 ⇒y=x2+3x−3 ⇒y=x2+3x−3+49−49 ⇒y=(x+23)2−421 ⇒y+421=(x+23)2 ⇒x+23=y+421 ⇒x=y+421−23 ⇒f−1(y)=y+421−23 ⇒f−1(x)=x+421−23=g(x) (given)
Minimum value of f−1(x) is 2−3 ∴α=−23 ∴x=α+25=−23+25=22=1
Now, g(x)=x+421−23 ⇒g′(x)=[2]x+4211
at x=1,g′(x)=21+4211=51