Q.
If α,β,γ are the roots of x3−2x+1=0, then the value of (∑α+β−γ1) is
4029
184
KCETKCET 2011Complex Numbers and Quadratic Equations
Report Error
Solution:
Given cubic equation is, x3−2x+1=0,(α,β,γ) are roots of this equation.
Then, sum of roots Σα=0 ⇒α+β+γ=0 Σαβ=−2,αβγ=−1
Now, we have Σα+β−γ1=Σ−γ−γ1=−21Σγ1 =−21(α1+β1+γ1) =−21(αβγαβ+βγ+αγ) =−21⋅αβγΣαβ=−21⋅(−1)(−2)=−1