Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If α+β+γ=2 π, then the system of equations x+( cos γ) y+( cos β) z=0 ( cos γ) x+y+( cos α) z=0 ( cos β) x+( cos α) y+z=0 has :
Q. If
α
+
β
+
γ
=
2
π
, then the system of equations
x
+
(
cos
γ
)
y
+
(
cos
β
)
z
=
0
(
cos
γ
)
x
+
y
+
(
cos
α
)
z
=
0
(
cos
β
)
x
+
(
cos
α
)
y
+
z
=
0
has :
3857
188
JEE Main
JEE Main 2021
Determinants
Report Error
A
no solution
0%
B
infinitely many solution
47%
C
exactly two solutions
35%
D
a unique solution
18%
Solution:
α
+
β
+
γ
=
2
π
∣
∣
1
cos
γ
cos
β
cos
γ
1
cos
α
cos
β
cos
α
1
∣
∣
=
1
+
2
cos
α
⋅
cos
β
⋅
cos
γ
−
cos
2
α
−
cos
2
β
−
cos
2
γ
=
sin
2
γ
−
cos
2
α
−
cos
2
β
+
(
cos
(
α
+
β
)
+
cos
(
α
−
β
))
cos
γ
=
sin
2
γ
−
cos
2
α
−
cos
2
β
+
cos
2
γ
+
cos
(
α
−
β
)
cos
γ
=
sin
2
α
−
cos
2
β
+
cos
(
α
−
β
)
cos
(
α
+
β
)
=
sin
2
α
−
cos
2
β
+
cos
2
α
−
sin
2
β
=
0