Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If α, β are the roots of the quadratic equation x2 + px + q = 0, then the values of α3, β3 and α4+α2β3+β4 are respectively
Q. If
α
,
β
are the roots of the quadratic equation
x
2
+
p
x
+
q
=
0
, then the values of
α
3
,
β
3
and
α
4
+
α
2
β
3
+
β
4
are respectively
1881
230
WBJEE
WBJEE 2014
Complex Numbers and Quadratic Equations
Report Error
A
3
pq
−
p
3
and
p
4
−
3
p
2
q
+
3
q
2
B
−
p
(
3
q
−
p
2
)
and
(
p
2
−
q
)
(
p
2
+
3
q
)
C
pq
−
4
and
p
4
−
q
4
D
3
pq
−
p
3
and
(
p
2
−
q
)
(
p
2
−
3
q
)
Solution:
∵
Sum of roots,
α
+
β
=
−
p
and
α
β
=
q
∴
(
α
3
+
β
3
)
=
(
α
+
β
)
3
−
3
α
β
(
α
+
β
)
=
(
−
p
)
3
−
3
q
(
−
p
)
=
−
p
3
+
3
pq
and
α
4
+
α
2
β
2
+
β
4
=
(
α
4
+
β
4
)
+
(
α
β
)
2
=
(
α
2
+
β
2
)
2
−
(
α
β
)
2
=
[
(
α
+
β
)
2
−
2
α
β
]
2
−
(
α
β
)
2
=
[
(
−
p
)
2
−
2
q
]
2
−
3
(
q
)
2
=
[
p
2
−
2
q
]
2
−
3
q
2
=
p
4
−
4
p
2
q
+
4
q
2
−
q
2
=
p
4
−
4
p
2
q
+
3
q
2
=
p
4
−
3
p
2
q
−
p
2
q
+
3
q
2
=
p
2
(
p
2
−
3
q
)
−
q
(
p
2
−
3
q
)
=
(
p
2
−
q
)
(
p
2
−
3
q
)