Since, α and β are roots of the quadratic equation x2−4x+5=0
So, α+β=4 and αβ=5 ... (i)
Now, (α2+β)+(α+β2)=(α2+β2)+(α+β) =(α+β)2−2αβ+(α+β) =16−10+4=10
and (α2+β)(α+β2)=α3+α2β2+βα+β3 =α3+β3+αβ(αβ+1) =(α+β)(α2+β2−αβ)+αβ(αβ+1) =(α+β)[(α+β)2−3αβ]+αβ(αβ+1) =4[16−15]+5(5+1) =4+30=34
So, the quadratic equation whose roots are (α2+β) and (α+β2) is x2−(α2+β+α+β2)x+(α2+β)(α+β2)=0 ⇒x2−10x+34=0