Since, α,β are the roots of the equation x2−4x+8=0 ∴α,β=24±16−32​​=24±4i​=2±2i ⇒α,β=22​(2​1​±i2​1​) =22​(cos4π​±isin4π​)
Now, α2n=(22​)2n(cos4π​+isin4π​)2n,n∈N =(22​)2n(cos2nπ​+isin2nπ​)
Similarly, β2n=(22​)2n(cos2nπ​−isin2nπ​) ∴α2n+β2n=(22​)2n⋅2cos2nπ​ =(23/2)2n⋅2cos2nπ​ ⇒α2n+β2n=23n+1cos2nπ​