Since, α,β are roots of the equation ax2+bx+c=0, we have ∴α+β=a−b,αβ=ac ∴a−bx+cx2=a(1−abx+acx2) =a{1+(α+β)x+αβx2}=a{(1+αx)(1+βx)}
Hence, log(a−bx+cx2) =log{a(1+αx)(1+βx)} =loga+log(1+αx)+log(1+βx) =loga+(αx−2(αx)2+3(αx)3−…) +(βx−2(βx)2+3(βx)3−…) =loga+(α+β)x−(2α2+β2)x2 +(3α3+β3)x3−…