Q.
If α,β and γ are the roots of the equation x3−3x2+3x+7=0, and w is cube root of unity, then the value of β−1α−1​+γ−1β−1​+α−1γ−1​ is equal to
We have, x3−3x2+3x+7=0 (x+1)(x2−4x+7)=0 x+1=0 or x2−4x+7=0 x=−1 or x=24±16−28​​ ⇒x=−1 or x=24±23​i​ ⇒x=−1 or x=2±3​i ⇒x=−1 or x=1−2w, 1−2w,1−2w2 [2w=−1+3​i,2w2=−1−3​i] ∴α=−1,β=1−2w and γ=1−2w2
Now, β−1α−1​+γ−1β−1​+α−1γ−1​ =1−2w−1−1−1​+1−2w2−11−2w−1​=−1−11−2w2−1​ =2w2​+2w22w​+22w2​ =w1​+w1​+w2=w2​+w2 =2w2+w2=3w2