Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If α, β and γ are the roots of the equation x3-3 x2-x-1=0 and f(x)=x-(1/x2)-2 then find the value of f(α) ⋅ f(β) ⋅ f(γ).
Q. If
α
,
β
and
γ
are the roots of the equation
x
3
−
3
x
2
−
x
−
1
=
0
and
f
(
x
)
=
x
−
x
2
1
−
2
then find the value of
f
(
α
)
⋅
f
(
β
)
⋅
f
(
γ
)
.
67
76
Complex Numbers and Quadratic Equations
Report Error
Answer:
4
Solution:
⇒
α
3
−
3
α
2
−
α
−
1
=
0
⇒
α
3
−
2
α
2
−
1
=
α
2
+
α
⇒
α
−
2
−
α
2
1
=
1
+
α
1
∴
f
(
α
)
⋅
f
(
β
)
⋅
f
(
γ
)
=
(
1
+
α
1
)
(
1
+
β
1
)
(
1
+
γ
1
)
=
1
+
(
α
1
+
β
1
+
γ
1
)
+
(
α
β
1
+
β
γ
1
+
γ
α
1
)
+
α
β
γ
1
=
1
+
α
β
γ
Σ
α
β
+
α
β
γ
Σ
α
+
α
β
γ
1
=
1
+
(
1
−
1
)
+
1
3
+
1
1
=
4