Q.
If α and β be the values of x in m2(x2−x)+2mx+3=0 and m1 and m2 be two values of m for which α and β are connected by the relation βα+αβ=34. Then the value of m2m12+m1m22 is
2598
216
Complex Numbers and Quadratic Equations
Report Error
Solution:
The given equation is m2x2+(2m−m2)x+3=0 ∴α+β=m22m−m2=mm−2 and αβ=m23
Now βα+αβ=34⇒αβα2+β2=34⇒αβ(α+β)2−2αβ=34
Substituting the values, we get m23(mm−2)2−2.m23=34 ⇒3m2−4m+4−6=34⇒m2−4m−6=0 m1 and m2 are roots of this equation, therefore m1+m2=4 and m1m2=−6
The given expression is, m2m12+m1m22=m1m2m13+m23 =m1m2(m1+m2)3−3m1m2(m1+m2) =−6(4)3−3.(−6).(4)=−368