Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If α and β are the roots of the equation ax2+bx+c=0, (c≠ 0), then the equation whose roots are (1/aα +b) and (1/aβ +b) is
Q. If
α
and
β
are the roots of the equation
a
x
2
+
b
x
+
c
=
0
,
(
c
=
0
)
,
then the equation whose roots are
a
α
+
b
1
and
a
β
+
b
1
is
2178
180
KEAM
KEAM 2010
Complex Numbers and Quadratic Equations
Report Error
A
a
c
x
2
−
b
x
+
1
=
0
B
x
2
−
a
c
x
+
b
c
+
1
=
0
C
a
c
x
2
+
b
x
−
1
=
0
D
x
2
+
a
c
x
−
b
c
+
11
=
0
E
a
c
x
2
−
b
x
−
11
=
0
Solution:
∵
α
,
β
are roots of equation,
a
x
2
+
b
x
+
c
=
0
(
c
=
0
)
∴
α
+
β
=
−
a
b
,
α
β
=
a
c
∴
Required equation is
x
2
−
(
a
α
+
b
1
+
α
β
+
b
1
)
x
+
(
a
α
+
b
1
.
a
β
+
b
1
)
⇒
x
2
−
(
a
2
α
β
+
ab
(
α
+
β
)
+
b
2
a
(
α
+
β
)
+
2
b
)
x
+
(
a
2
α
β
+
ab
(
α
+
β
)
+
b
2
1
)
=
0
⇒
x
2
−
(
a
2
.
a
c
+
ab
(
−
a
b
)
+
b
2
a
(
−
a
b
)
+
2
b
)
x
+
a
2
.
a
c
+
ab
(
−
a
b
)
+
b
2
1
=
0
⇒
x
2
−
a
c
b
x
+
a
c
1
=
0
⇒
a
c
x
2
−
b
x
+
1
=
0