Given equation, x3−x2−x−2=0 ⇒(x−2)(x2+x+1)=0 ∴α and β are 2−1±3i or we can say α and β are non-real complex roots of unity.
So, let α=ω and β=ω2,
where ω3=1 and ω2+ω+1=0 ∴α2020+β2020+α2020β2020 =ω2020+ω4040+ω2020ω4040 =(ω3)673ω+(ω3)1346ω2+(ω3)673ω(ω3)1346ω2 =ω+ω2+ω3=1+ω+ω2=1+α+β