Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If all the roots of the equation x3-3 x=0 satisfy the equation (α- sin -1( sin 2)) x2-(β- tan -1( tan 1)) x+γ2-2 γ+1=0 , then find the value of | cot (β+γ)+ cot α|.
Q. If all the roots of the equation
x
3
−
3
x
=
0
satisfy the equation
(
α
−
sin
−
1
(
sin
2
)
)
x
2
−
(
β
−
tan
−
1
(
tan
1
)
)
x
+
γ
2
−
2
γ
+
1
=
0
, then find the value of
∣
cot
(
β
+
γ
)
+
cot
α
∣
.
226
168
Inverse Trigonometric Functions
Report Error
Answer:
0
Solution:
∵
x
=
0
,
3
,
−
3
satisfy the
Q
.
E
.
∴
It is an identity
∴
α
−
sin
−
1
(
sin
2
)
=
0
⇒
α
=
sin
−
1
sin
2
=
π
−
2
β
=
tan
−
1
tan
1
=
1
γ
2
−
2
γ
+
1
=
0
⇒
γ
=
1
∴
E
=
∣
cot
(
β
+
γ
)
+
cot
α
∣
=
∣
cot
2
+
cot
(
π
−
2
)
∣
=
0