Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a, x are real numbers and |a| <1, |x|<1, then 1+(1+a)x+(1+a+a2)x2+.... ∞ is equal to
Q. If
a
,
x
are real numbers and
∣
a
∣
<
1
,
∣
x
∣
<
1
,
t
h
e
n
1
+
(
1
+
a
)
x
+
(
1
+
a
+
a
2
)
x
2
+
....∞
is equal to
3509
226
WBJEE
WBJEE 2016
Sequences and Series
Report Error
A
(
1
−
a
)
(
1
−
a
x
)
1
36%
B
(
1
−
a
)
(
1
−
x
)
1
18%
C
(
1
−
x
)
(
1
−
a
x
)
1
45%
D
(
1
+
a
x
)
(
1
−
a
)
1
0%
Solution:
1
−
x
1
+
1
−
x
a
x
+
1
−
x
a
2
x
2
+
....
=
1
−
x
1
×
(
1
+
a
x
+
a
2
x
2
+
.....
)
=
1
−
x
1
.
1
−
a
x
1