Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a system of equation - ax + y + z = 0 x - by + z = 0 x + y - cz = 0 (a, b, c ≠ -1) has a non-zero solution then (1/1+a) + (1/1+b) + (1/1+c) =
Q. If a system of equation
−
a
x
+
y
+
z
=
0
x
−
b
y
+
z
=
0
x
+
y
−
cz
=
0
(
a
,
b
,
c
=
−
1
)
has a non-zero solution then
1
+
a
1
+
1
+
b
1
+
1
+
c
1
=
3594
218
Determinants
Report Error
A
0
26%
B
1
22%
C
2
48%
D
3
4%
Solution:
Δ
=
∣
∣
−
a
1
1
1
−
b
1
1
1
−
c
∣
∣
=
0
for non-zero solution
⇒
ab
c
−
a
−
b
−
c
−
2
=
0
⇒
ab
c
=
a
+
b
+
c
+
2
Now,
1
+
a
1
+
1
+
b
1
+
1
+
c
1
=
1
+
(
a
+
b
+
c
)
+
(
ab
+
b
c
+
a
c
)
+
ab
c
3
+
2
(
a
+
b
+
c
)
+
(
ab
+
b
c
+
a
c
)
=
1
+
2
(
a
+
b
+
c
)
+
2
+
ab
+
b
c
+
a
c
3
+
2
(
a
+
b
+
c
)
+
(
ab
+
b
c
+
a
c
)
=
1