Q.
If a=log1218&b=log2454 then find the value of ab+5(a−b).
47
109
Continuity and Differentiability
Report Error
Answer: 1
Solution:
a=log1218&b=log2454 log1218⋅log2454+5(log1218−log2454)<br/>log827+5 a=log312log318=1+2log322+log32 b=log2454 b=log324log354=1+3log323+log32
Let log32 be x ∴a=1+2x2+x,b=1+3x3+x ∴ab+5(a−b) =(1+2x)(1+3x)(2+x)(3+x)+5[1+2x2+x−1+3x3+x] =(1+2x)(1+3x)6+5x+x2+5(2+6x+x+3x2−3−6x−x−2x2)=(1+2x)(1+3x)6+5x+x2+5(x2−1) =(1+2x)(1+3x)x2+5x+6+5x2−5=6x2+5x+16x2+5x+1=1