Q.
If a function f(x) is defined as f(x)={x2x,x=00,x=0 then :
1977
253
Continuity and Differentiability
Report Error
Solution:
Given :f(x)={x2x0,x=0,x=0. ∴f(x)={∣x∣x0,x=0,x=0. ∴f(0)=0 R.H.L=x→0+limf(x)=h→0lim∣0+h∣0+h=h→0limhn=1 L.H.L.=x→0−limf(x)=h→0lim∣(0−h)∣(0−h)=h→0limh−h=−1 R.H.L=L.H.L
i.e. x→0+limf(x)=x→0−limf(x) ∴f(x) is discontinuous at x=0