f(x)=<br/><br/>⎩⎨⎧<br/><br/>aex+be−x,<br/><br/>cx2,<br/><br/>ax2+2cx,−1≤x<11≤x≤33<x≤4<br/><br/>
For continuity at x=1 x→1−limf(x)=x→1+limf(x) ⇒ae+be−1=c ⇒b=ce−ae2…(1)
For continuity at x=3 x→3−limf(x)=x→3+limf(x) ⇒9c=9a+6c ⇒c=3a…(2) f′(0)+f′(2)=e (aex−bex)x=0+(2cx)x=2=e ⇒a−b+4c=e…(3)
From (1),(2)&(3) a−3ae+ae2+12a=e ⇒a(e2+13−3e)=e ⇒a=e2−3e+13e