Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a = displaystyle∑ r =033 33 C r , b = displaystyle∑ r =033 66 C 2 r , c = displaystyle∑ r =033 99 C 3 r , then
Q. If
a
=
r
=
0
∑
33
33
C
r
,
b
=
r
=
0
∑
33
66
C
2
r
,
c
=
r
=
0
∑
33
99
C
3
r
, then
91
111
Binomial Theorem
Report Error
A
3
c
=
2
(
ab
+
1
)
B
a
3
=
3
c
+
2
C
3
c
=
2
(
ab
−
1
)
D
a
2
=
2
b
Solution:
n
C
0
+
n
C
1
+
n
C
2
…
.
n
C
n
=
2
n
⇒
a
=
2
33
n
C
0
+
n
C
2
+
n
C
4
+
…
=
2
n
−
1
⇒
b
=
2
65
(
1
+
x
)
n
=
n
C
0
+
n
C
1
x
+
n
C
2
x
2
+
n
C
3
x
3
+
…
..
+
n
C
n
x
n
Put
x
=
1
,
ω
and
ω
2
and add them, we get
C
=
3
2
99
−
2
Now check the answer