We have, ax+by+2=0 and ax+by+5=0 are parallel lines. ax+by+2=0 ⇒y=b−ax−b2
and ax+by+5=0 ⇒y=b−axb−5
So, m1=b−a,c1=b−2,c2=−b5
Now, again cx+dy+3=0 ⇒y=d−cx−d3
and cx+dy+7=0 ⇒y=d−cx−d7
So, m2=d−c,d1=d−3,d2=d−7
Then, area of parallelogram =∣∣m1−m2(c1−c2)(d1−d2)∣∣ =∣∣−ba+dc(b−2+b5)(d−3+d7)∣∣ =∣∣bd−(ad−bc)b3×d4∣∣=∣∣ad−bc−12∣∣=∣ad−bc∣12