a=cos(118π)+isin(118π) ⇒a=e11i8π ⇒a is 11th root of unity and all roots are 1,a,a2,…,a10
Now, a10=aa10⋅a=aa11=a1=aˉ
Similarly, a9=a2,a8=a3,a7=a4,a6=a5,
We know that,
Sum of n roots of unity =0 1+a1+a2+a3+…+a10=0 ⇒a+a2+a3+a4+a5+a6+a7+a8+a9+a10=−1 ⇒(a+aˉ)+(a2+a2)+(a3+a3)+(a4+a4)+(a5+a5)=−1 ⇒2Re(a)+2Re(a2)+2Re(a3)+2Re(a4)+2Re(a5)=−1[z+zˉ=2Re(z)] ⇒2Re(a+a2+a3+a4+a5)=−1 ⇒Re(a+a2+a3+a4+a5)=−21