The given matrices are A=[cos2αcosαsinαcosαsinαsin2α]
and B=[cos2βcosβsinβcosβsinβsin2β]
It is given that AB=0 ⇒[cos2αcosαsinαcosαsinαsin2α] [cos2βcosβsinβcosβsinβsin2β]=[0000] ⇒[cos2αcos2β+cosαsinαcosβsinβcos2αcosβsinβ+cosαsinαsin2βcosαsinαcos2β+sin2αcosβsinβcosαsinαcosβsinβ+sin2αsin2β] =[0000] ⇒[cosαcosβ⋅cos(α−β)cosβsinαcos(α−β)cosαsinβcos(α−β)sinαsinβcos(α−β)] =[0000]
On equating the corresponding parts, we have cosα⋅cosβcos(α−β)=0 cosβsinαcos(α−β)=0 cosαsinβcos(α−β)=0 sinαsinβcos(α−β)=0 ⇒cos(α−β)=0 ∴α−β=2π