Given equation is z+2∣z+1∣+i=0
put z=x+iy in the given equation. (x+iy)+2∣x+iy+1∣+i=0 ⇒x+iy+2[(x+1)2+y2]+i=0
Now, equating real and imaginary part, we get x+2(x+1)2+y2=0 and y+1=0⇒y=−1 ⇒x+2(x+1)2+(−1)2=0(∵y=−1) ⇒2(x+1)2+1=−x ⇒2[(x+1)2+1]=x2 ⇒x2+4x+4=0 ⇒x=−2
Thus, z=−2+i(−1)⇒∣z∣=5