Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If A =[ beginmatrix0&1&1 1&0&1 1&1&0 endmatrix], then (A2-3I/2)=
Q. If
A
=
⎣
⎡
0
1
1
1
0
1
1
1
0
⎦
⎤
, then
2
A
2
−
3
I
=
2007
221
Determinants
Report Error
A
A
−
1
21%
B
2
A
28%
C
2
A
−
1
23%
D
2
3
A
−
1
28%
Solution:
We have given,
A
=
⎣
⎡
0
1
1
1
0
1
1
1
0
⎦
⎤
∴
adj A
=
⎣
⎡
−
1
1
1
1
−
1
1
1
1
−
1
⎦
⎤
and
∣
A
∣
=
−
1
(
−
1
)
+
1
⋅
1
=
2
Hence,
A
−
1
=
∣
A
∣
a
d
j
A
=
2
1
⎣
⎡
−
1
1
1
1
−
1
1
1
1
−
1
⎦
⎤
…
(
i
)
and
A
2
=
⎣
⎡
0
1
1
1
0
1
1
1
0
⎦
⎤
⋅
⎣
⎡
0
1
1
1
0
1
1
1
0
⎦
⎤
=
⎣
⎡
2
1
1
1
2
1
1
1
2
⎦
⎤
…
(
ii
)
Now,
2
A
2
−
3
I
=
2
1
⎩
⎨
⎧
⎣
⎡
2
1
1
1
2
1
1
1
2
⎦
⎤
−
⎣
⎡
3
0
0
0
3
0
0
0
3
⎦
⎤
⎭
⎬
⎫
=
2
1
⎣
⎡
−
1
1
1
1
−
1
1
1
1
−
1
⎦
⎤
=
A
−
1
[using (i)]