Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If A+B+C=π , then the value of | beginmatrix sin (A+B+C) sin B cos C - sin B 0 tan A cos (A+B) - tan A 0a endmatrix | is
Q. If
A
+
B
+
C
=
π
,
then the value of
∣
∣
sin
(
A
+
B
+
C
)
−
sin
B
cos
(
A
+
B
)
sin
B
0
−
tan
A
cos
C
tan
A
0
a
∣
∣
is
2524
248
J & K CET
J & K CET 2003
Report Error
A
0
B
1
C
2 sin B tan A cos C
D
None of the above
Solution:
Given that,
A
+
B
+
C
=
π
Let
Δ
=
∣
∣
sin
(
A
+
B
+
C
)
−
sin
B
cos
(
A
+
B
)
sin
B
0
−
tan
A
cso
C
tan
A
0
∣
∣
=
∣
∣
sin
(
π
)
−
sin
B
cos
(
π
−
C
)
sin
B
0
−
tan
A
cos
C
tan
A
0
∣
∣
=
∣
∣
0
−
sin
B
cos
C
sin
B
0
−
tan
A
cos
C
tan
A
0
∣
∣
=
0
(
∵
It is a skew-symmetric determinant of odd order)