Q.
If a,b,c,d and p are distinct real numbers such that (a2+b2+c2)p2−2(ab+bc+cd)p+(b2+c2+d2)≤0 then a,b,c and d
1439
194
Complex Numbers and Quadratic Equations
Report Error
Solution:
We have, (a2+b2+c2)p2−2(ab+bc+cd)p+(b2+c2+d2)≤0 ⇒(ap−b)2+(bp−c)2+(cp−d)2≤0 ⇒(ap−b)2+(bp−c)2+(cp−d)2=0 (a,b,c,d,p∈R) ⇒ap−b=0, bp−c=0,cp−d=0 ⇒ab=bc=cd=p ⇒a,b,c,d are in G.P.