Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a, b, c are real numbers such that a-b=1, b-c=3, then the number of matrices of the form A=[1 1 1 a b c a2 b2 c2] such that |A|=-12, is
Q. If
a
,
b
,
c
are real numbers such that
a
−
b
=
1
,
b
−
c
=
3
, then the number of matrices of the form
A
=
⎣
⎡
1
a
a
2
1
b
b
2
1
c
c
2
⎦
⎤
such that
∣
A
∣
=
−
12
, is
2419
206
TS EAMCET 2019
Report Error
A
1
B
2
C
3
D
infinitely many
Solution:
We have,
A
=
⎣
⎡
1
a
a
2
1
b
b
2
1
c
c
2
⎦
⎤
∣
A
∣
=
⎣
⎡
1
a
a
2
1
b
b
2
1
c
c
2
⎦
⎤
∣
A
∣
=
⎣
⎡
1
a
a
2
0
b
−
a
b
2
−
a
2
0
c
−
a
c
2
−
a
2
⎦
⎤
=
(
b
−
a
)
(
c
−
a
)
(
c
−
b
)
∣
A
∣
=
(
a
−
b
)
(
b
−
c
)
(
c
−
a
)
∣
A
∣
=
−
12
,
(
a
−
b
)
=
1
,
(
b
−
c
)
=
3
∵
(
a
−
b
)
(
b
−
c
)
(
c
−
a
)
=
−
12
1
×
3
×
(
c
−
a
)
=
−
12
c
−
a
=
−
4
⇒
a
−
c
=
4
∵
a
−
b
=
1
,
b
−
c
=
3
,
a
−
c
=
4
∴
Infinite solution.