Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a,b,c are real numbers satisfying the condition a+b+c=0, then the roots of the quadratic equation 3ax2+5bx+7c=0 are
Q. If
a
,
b
,
c
are real numbers satisfying the condition
a
+
b
+
c
=
0
,
then the roots of the quadratic equation
3
a
x
2
+
5
b
x
+
7
c
=
0
are
633
166
NTA Abhyas
NTA Abhyas 2022
Report Error
A
Positive
B
negative
C
real and equal
D
distinct but not imaginary
Solution:
D
=
25
b
2
−
4
×
3
a
×
7
c
=
25
(
−
a
−
c
)
2
−
84
a
c
=
25
(
a
2
+
c
2
+
2
a
c
)
−
84
a
c
=
25
(
a
2
+
c
2
)
−
34
a
c
=
17
(
a
2
+
c
2
−
2
a
c
)
+
8
(
a
2
+
c
2
)
=
17
(
a
−
c
)
2
+
8
(
a
2
+
c
2
)
D
>
0
⇒
Roots are real and distinct