Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a, b, c and d ∈ R such that a2+b2=4 and c2+d2=2 and if (a+i b)2=(c+i d)2(x+i y), then x2+y2 is equal to
Q. If
a
,
b
,
c
and
d
∈
R
such that
a
2
+
b
2
=
4
and
c
2
+
d
2
=
2
and if
(
a
+
ib
)
2
=
(
c
+
i
d
)
2
(
x
+
i
y
)
, then
x
2
+
y
2
is equal to
2116
206
EAMCET
EAMCET 2012
Report Error
A
4
B
3
C
2
D
1
Solution:
Given,
(
a
+
ib
)
2
=
(
c
+
i
d
)
2
(
x
+
i
y
)
⇒
∣
a
+
ib
∣
2
=
∣
c
+
i
d
∣
2
∣
x
+
i
y
∣
⇒
a
2
+
b
2
=
(
c
2
+
d
2
)
(
x
2
+
y
2
)
⇒
4
=
2
(
x
2
+
y
2
)
(
∵
a
2
+
b
2
=
4
and
c
2
+
d
2
=
2
given )
⇒
x
2
+
y
2
=
2
⇒
x
2
+
y
2
=
4