We have, a×(b×c)+(a⋅b)b =(4−2β−sinα)b+(b2−1)c(1)
and (c⋅c)a=c(2)
where b and c are non-collinear vectors and α,β are scalars
From (2), (c⋅c)a⋅c=c⋅c ∴a⋅c=1(3)
From (1), we get (a⋅c)b−(a⋅b)c+(a⋅b)b =(4−2β−sinα)b+(β2−1)c
or [1+(a⋅b)]b−(a⋅b)c =(4−2β−sinα)b+(β2−1)c ⇒1+(a⋅b)=4−2β−sinα(4)
and a⋅b=−(b2−1)(5) ∴sinα=1+(1−β)2 ⇒β=1,sinα=1
i.e., α=2π+2nπ,n∈I