Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If A, B and C are such that A+B+C=0, then the value of |1 cos C cos B cos C 1 cos A cos B cos A 1| is
Q. If
A
,
B
and
C
are such that
A
+
B
+
C
=
0
, then the value of
∣
∣
1
cos
C
cos
B
cos
C
1
cos
A
cos
B
cos
A
1
∣
∣
is
145
78
Determinants
Report Error
A
1
B
1
−
cos
2
A
−
cos
2
B
−
cos
2
C
−
2
cos
A
cos
B
cos
C
C
0
D
-1
Solution:
C
2
→
C
2
−
(
cos
C
)
C
1
C
3
→
C
3
−
(
cos
B
)
C
1
=
∣
∣
1
cos
C
cos
B
0
sin
2
C
cos
A
−
cos
B
cos
C
0
cos
A
−
cos
B
cos
C
sin
2
B
∣
∣
∵
A
+
B
+
C
=
0
⇒
A
=
−
(
B
+
C
)
⇒
cos
A
−
cos
B
cos
C
=
−
sin
B
sin
C
=
∣
∣
1
cos
C
cos
B
0
sin
2
C
−
sin
B
sin
C
0
−
sin
B
sin
C
sin
2
B
∣
∣
=
0