Applying R1→aR1,R2→bR2 and R3→cR3, we get Δ=abc1∣∣ab2c2a2bc2a2b2cabcabcabcab+acbc+abac+bc∣∣=abca2b2c2∣∣bcacab111ab+acbc+abac+bc∣∣
Applying C3→C3+C1 and taking (bc+ca+ab) common, we get Δ=abc(bc+ca+ab)∣∣bcacab111111∣∣=0 [∵C2andC3are identical]