Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a, b and c are all different from zero and |1+a&1&1 1&1+b&1 1&1&1+c| = 0 , then the value of (1/a) + (1/b) + (1/c) is
Q. If
a
,
b
and
c
are all different from zero and
∣
∣
1
+
a
1
1
1
1
+
b
1
1
1
1
+
c
∣
∣
=
0
, then the value of
a
1
+
b
1
+
c
1
is
2509
219
COMEDK
COMEDK 2006
Determinants
Report Error
A
-1
22%
B
ab
c
33%
C
ab
c
1
40%
D
−
a
−
b
−
c
5%
Solution:
∣
∣
1
+
a
1
1
1
1
+
b
1
1
1
1
+
c
∣
∣
=
0
⇒
(
1
+
a
)
[(
1
+
b
)
(
1
+
c
)
−
1
)
−
1
((
1
+
c
)
−
1
)
+
1
(
1
−
(
1
+
b
))
=
0
⇒
(
1
+
a
)
(
b
+
c
+
b
e
)
−
c
−
b
=
0
⇒
b
+
c
+
b
c
+
ab
+
a
c
+
ab
c
−
b
−
c
=
0
⇒
ab
+
b
c
+
c
a
=
−
ab
c
⇒
c
1
+
a
1
+
b
1
=
−
1
∴
a
1
+
b
1
+
c
1
=
−
1