Given system of equation is, x+2y+z=1 x+3y+4z=k x+5y+10z=k2 ∴D=∣∣1112351410∣∣ =1(30−20)−2(10−4)+1(5−3)=10−12+2=0
Since, D=0 ∴ Given system of equation is consistent.
Therefore, D1=0 D1=∣∣1kk22351410∣∣ ⇒1(30−20)−2(10k−4k2)+(5k−3k2)=0 ⇒10−20k+8k2+5k−3k2=0 ⇒5k2−15k+10=0 ⇒k2−3k+2=0 ⇒(k−2)(k−1)=0 ⇒k=2,1
Hence, the real values of k i.e. A=2 and B=1 ∴A+B=2+1=3