Given, x2+ax+b=0
For district now zero roots D>0 ⇒a2−4b>0
Now, x2+ax+b =(x+2a)2+(b−4a2) =(x+2a)2−(a2−44b)
We know, sum of roots a+b=−a ⇒2a+b=0 ...(i)
Product of roots a×b=b ⇒b(a−1)=0 ⇒a=1,b=0
From Eq. (i), 2a+b=0 2(1)+b=0 b=−2
Now, (x+2a)2−(412+4×2) =(x+2a)2−49 ∴ Minimum value =−49