Given, A and B are symmetric matrix of same order. ⇒A=A′,B=B′...(i)
(i) (A+B)′=A′+B′=A+B [from Eq. (i)] ⇒(A+B) is symmetric.
(ii) (A−B)′=A′−B′=A−B [from Eq. (i) ] ⇒(A−B) is symmetric.
(iii) (AB+BA)′=(AB)′+(BA)′ =B′A′+A′B′ =BA+AB [from Eq.(i)] =(AB+BA) ⇒(AB+BA) is symmetric.
(iv) (AB−BA)′=(AB)′−(BA)′ =B′A′−A′B′ =BA−AB [from Eq.(i)] =−(AB−BA) ⇒(AB−BA) is skew-symmetric matrix.