Q.
If a and b are respectively the internal and external bisectors of the angles between the vectors −i^+2j^−2k^ and 3i^+4j^ and ∣a∣=326,∣b∣=323, then one of the values of a−b is
We have, −i^+2j^−2k^ and i^+4j^ a and b are the angle bisector of vectors ∴∣a∣=λ∣∣53i^+4j^+3−i^+2j^−2k^∣∣ =λ∣∣154i^+22j^−10k^∣∣∣ ∣a∣=326=15λ16+484+100 ⇒λ=1
Similarly ∣b∣=μ[53i^+4j^−3−i^+2j^−2k^] =μ(1514i^+2j^+10k^) ∣b∣=323=15μ196+4+100 ⇒μ=1 ∴a−b=154i^+2j^−10k^−1514i^+2j^+10k^ =32(−i^+2j^−2k^)