Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a and b are real numbers such that (2+α)4= a + b α, where α=(-1+ i √3/2), then a + b is equal to
Q. If a and
b
are real numbers such that
(
2
+
α
)
4
=
a
+
b
α
,
where
α
=
2
−
1
+
i
3
,
then
a
+
b
is equal to
3846
174
JEE Main
JEE Main 2020
Complex Numbers and Quadratic Equations
Report Error
A
57
16%
B
33
33%
C
24
33%
D
9
18%
Solution:
α
=
ω
(
ω
3
=
1
)
⇒
(
2
+
ω
)
4
=
a
+
bω
⇒
2
4
+
4
⋅
2
3
ω
+
6.
2
2
ω
3
+
4.2
⋅
ω
3
+
ω
4
=
a
+
bω
⇒
16
+
32
ω
+
24
ω
2
+
8
+
ω
=
a
+
bω
⇒
24
+
24
ω
2
+
33
ω
=
a
+
bω
⇒
−
24
ω
+
33
ω
=
a
+
bω
⇒
a
=
0
,
b
=
9