Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a and b are positive numbers such that a>b, then the minimum value of a sec θ -b tan θ ( 0<θ <(π /2) ) is
Q. If
a
and
b
are positive numbers such that
a
>
b
,
then the minimum value of
a
sec
θ
−
b
tan
θ
(
0
<
θ
<
2
Ï€
​
)
is
3517
225
KEAM
KEAM 2009
Trigonometric Functions
Report Error
A
a
2
−
b
2
​
1
​
0%
B
a
2
+
b
2
​
1
​
0%
C
a
2
+
b
2
​
100%
D
a
2
−
b
2
​
0%
E
a
2
−
b
2
0%
Solution:
Let
y
=
a
sec
θ
−
b
tan
θ
⇒
d
θ
d
y
​
=
a
sec
θ
tan
θ
−
b
sec
2
θ
Put
d
θ
d
y
​
=
0
⇒
sec
θ
(
a
tan
θ
−
b
sec
θ
)
=
0
⇒
sin
θ
=
a
b
​
(
∵
sec
θ
î€
=
0
)
Now,
d
θ
2
d
2
y
​
>
0
,
at
sin
θ
=
a
b
​
∴
Minimum value is
y
=
a
.
a
2
−
b
2
​
a
​
−
b
.
a
2
−
b
2
​
b
​
=
a
2
−
b
2
​