Q.
If a,a2,a3,........an,.... are in GP, then the value of the determinant ∣∣loganlogan+3logan+6logan+1logan+4logan+7logan+2logan+5logan+8∣∣, is
Since a1,a2,......,an are in GP Then, an=a1rn−1⇒logan=loga1+(n−1)logran+1=a1rn⇒logan+1=loga1+nlogran+2=a1rn⇒logan+2=loga1+(n+1)logr ????.. ????. ????. an+8=a1rn+7⇒logan+8=loga1+(n+7)logr Now, ∣∣loganlogan+3logan+6logan+1logan+4logan+7logan+2logan+5logan+8∣∣=∣∣loga1+(n−1)logrloga1+(n+2)logrloga1+(n+5)logrloga1+nlogrloga1+(n+3)logrloga1+(a+6)logrloga1+(n+1)logrloga1+(n+4)logrloga1+(n+7)logr∣∣ Now, R2→R2−R1 and R3→R3−R1⇒∣∣loga1+(n−1)logr3logr3logrloga1+nlogr3logr3logrloga1+(n+1)logr3logr3logr∣∣=0 (since two rows are identical)