Given that, points A(4,7,8),B(2,3,4) and C(2,5,7)
Length AB=(xA−xB)2+(yA−yB)2+(zA−zB)2 =(4−2)2+(7−3)2+(8−4)2 =(2)2+(4)2+(4)2=4+16+16 AB=6
Length AC=(xA−xC)2+(yA−yC)2+(zA−zC)2 =(4−2)2+(7−5)2+(8−7)2 =(2)2+(2)2+(1)2=4+4+1 AC=3⇒AB:AC=6:3=2:1
Now, let say the internal bisector of the angle A meets the side BC that point D(xD,yD,zD) ∴x-coordinate of point D, xD=m+nmxC+nxB=2+12×2+1×2 ⇒xD=2 y-coordinate of point D, yD=m+nmyC+nyB=2+12×5+1×3 =313 z-coordinate of point D,z-coordinate of point D, zD=m+nmzC+nzB=2+12×7+1×4 =318=6 ∵ Point D(2,313,6)
So, length =(4−2)2+(7−313)2+(8−6)2 =(2)2+(38)2+(2)2 =4+964+4=9136=3234