Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a > 2b > 0, then positive value of m for which y = mx - b √1+m2 is a common tangent to x2 + y 2 = b2 and (x - a)2 + y 2 = b2 is
Q. If
a
>
2
b
>
0
,
then positive value of m for which
y
=
m
x
−
b
1
+
m
2
is a common tangent to
x
2
+
y
2
=
b
2
and
(
x
−
a
)
2
+
y
2
=
b
2
is
2486
209
IIT JEE
IIT JEE 2002
Conic Sections
Report Error
A
a
2
−
4
b
2
2
b
48%
B
2
b
a
2
−
4
b
2
31%
C
a
−
2
b
2
b
16%
D
a
−
2
b
b
6%
Solution:
Given,
y
=
m
x
−
b
1
+
m
2
touches both the circles, so
distance from centre = radius of both the circles.
m
2
+
1
∣
ma
−
0
−
b
1
+
m
2
∣
=
an
d
m
2
+
1
∣
−
b
1
+
m
2
∣
=
b
⇒
∣
ma
−
b
1
+
m
2
∣
and
∣
−
b
1
+
m
2
∣
⇒
m
2
a
2
−
2
abm
1
+
m
2
+
b
2
(
1
+
m
2
)
=
b
2
(
1
+
m
2
)
⇒
ma
−
2
b
1
+
m
2
=
0
⇒
m
2
a
2
=
4
b
2
(
1
+
m
2
)
∴
m
=
a
2
−
4
b
2
2
b