Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If|a2 b2 c2 (a+λ)2 (b+λ)2 (c+λ)2 (a-λ)2 (b-λ)2 (c-λ)2 |=k λ|a2 b2 c2 a b c 1 1 1| λ ≠ 0, then k is equal to:
Q. If
∣
∣
a
2
(
a
+
λ
)
2
(
a
−
λ
)
2
b
2
(
b
+
λ
)
2
(
b
−
λ
)
2
c
2
(
c
+
λ
)
2
(
c
−
λ
)
2
∣
∣
=
kλ
∣
∣
a
2
a
1
b
2
b
1
c
2
c
1
∣
∣
λ
=
0
, then
k
is equal to:
157
125
Determinants
Report Error
A
4
λab
c
B
−
4
λab
c
C
4
λ
2
D
−
4
λ
2
Solution:
Using
R
3
→
R
3
−
R
2
and
R
2
→
R
2
−
R
1
, we get
Δ
=
∣
∣
a
2
2
aλ
+
λ
2
−
4
aλ
b
2
2
bλ
+
λ
2
−
4
bλ
c
2
2
c
λ
+
λ
2
−
4
c
λ
∣
∣
Take
−
4
λ
common from
R
3
, and applying
R
2
→
R
2
−
2
λ
R
3
, we get
Δ
=
−
4
λ
3
∣
∣
a
2
1
a
b
2
1
b
c
2
1
c
∣
∣
=
λ
(
4
λ
2
)
∣
∣
a
2
a
1
b
2
b
1
c
2
c
1
∣
∣
∴
k
=
4
λ
2